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Since the experiments of the high-resolution
spectrum of the proton magnetic resonance in
organic compounds showed very fruitful results,
many efforts have been made to continue the
measurements and to analyze the spectra of
many compounds?’. During these measurements,
one encountered spectra so complicated that
they can not be analyzed by the simple in-
spection of the chemical formula of the samples.
These complicated spectra arise in the systems
where the differences of the chemical shift
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1) See, for example, Pople, Schneider and
Bernstein, ‘‘ High Resolution Nuclear Magnetic Reson-
ance,” McGraw Hill Book Co. Inc., New York (1959).

values, 4eij, and the spin-spin coupling con-
stants, J;j, are comparable to each other, where
i and j refer to the resonating nuclei, and
they can be analyzed by quantum-mechanical
procedures. Two methods have so far been
proposed for the analysis of these complicated
spectra ; one was shown by Banerjee, Das, and
Saha® in the treatments of the two- and three-
proton systems and the other, which is more
general than the former, was shown by
McConnell, McLean and Reilley®.

This paper concerns the analyses of such

2) N. K. Banerjee, T. P. Das and A. K. Saha, Proc. Roy.
Soc. (London), A, 226, 490 (1954).

3) H. M. McConnell, A. D. McLean and C. A. Reilley,
J. Chem. Phys., 23, 1152 (1955).
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complicated spectra, using di-substituted ben-
zenes of the type X—{ >—Y as an example.

The method to be shown here is based on the
classical treatment of the nuclear magnetic
resonance (NMR) phenomena, and is as-
sumed to be helpful for chemists who are not
familiar with the quantum-mechanical proce-
dures to obtain the necessary understanding of
the analysis of the NMR spectrum.

Analysis of NMR Spectrum by a
Harmonic Oscillator Model

First, the nuclear magnetic resonance of a
molecule which has only one hydrogen atom
is considered. As there is no interest in the
time-dependent phenomena, the equation of
the classical or macroscoplc vector M placed

in a static magnetic field Ha may be written as

dM/dt = yMx H, (1)

where, 7 is the gyromagnetic ratio of proton.
Eq. 1 is the formula given by Bloch®>. The
intensity of the signal due to the nuclear
magnetic resonance can be mcasured by the
x-component M(z//Ho) when M is forced to
flip down onto the x-y plane by the interac-
tion of the nucleus with the oscillating magne-
—»

tic field H,(r) which rotates in the x-y plane
with the angular frequency w,. Thus, the
resonance angular frequency is defined as that

—» o
of H, which flips M most effectively, called as
the angular frequency of the Larmor preces-
sional motion ofM in the field of Ho Hence,
we can calculate the resonant frequency and
the relative intensity of thé spectrum, even if

—»

we omit the effect of H;, and the contribution of
i
H, is taken into account in the considerations
of the amplitude of the precession.

From (1), it is easily seen that M, behaves
as a simple harmonic oscillator which obeys
Eq. 2 at resonance :

dzM;/df2+w02Mx:0 (2)

On the other hand, the equation of the
motion of a simple harmonic oscillator may
be written as

m(d2X/de?) +fX=0 3)

where m and f are the mass and the force
constant of the oscillator. Eq. 3 will become
equal to Fig. 2 by making the following
interpretation :

XZMx’
f=rHy=w, and (4)
m=1/w (=1/w,; at resonance)

" 4) F. Bloch, Phys. Rev., 10, 460 (1946).
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These relations can be extended to any
many-spin system by slight modification of
the definition of the force constants. For ex-
ample, the straightforward extension to a two-
spin system composed of two protons, A and
B, may be made by additional replacement of
the force constant, f, by the spin-spin coupling
constant J as

fap=tJap/2 (4a)

A positive sign is used when A«;’A and Mp are
parallel, and the negative sign antiparallel.
The situation of this model of the interacting
oscillators is illustrated in Fig. 1. The inter-
action energies of these oscillators refer the
off-diagonal terms of secular equations, where
the sign of eac term his taken to be positive as
well as that of J. Justification of this choice
of the sign will be given later.

Ia

-

Fig. 1.

Explanation of the oscillator model.

(a) fas=Jap/2
(b) fas=Jas/2

The potential energy of the system may be
written as Eq. 5,

V=1/2+[fa(dra)?+fas(dras)?+fe(dre)?]l (5)

where ra, rg and rap are the elongations of
the springs, A, B and C, whose force con-
stants are fa, fs, and fap, respectively. The
expression (5) may be rewritten by the Car-
tesian coordinate x as

V=1/2 [(fa+fap)X*a+2fanXaXs
+ (fa+fan) x*s]
=1/2- [(wa+Tas/2) M?ax+JaMarMex
+ (wp+Jas/2) M*3:] (6)
In Eq. 6 we used the relations, dry=x4, drg
= —xp and drag=xa+Xz.

The kinetic energy of the system, T, is as
shown by
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T=m[x’5+x’s] /2 @)
= [M%:+ M%) 20 (7a)

As the x-y components of the magnetic
— —»
vectors, Maxy and Msp.y rotate about the z-
axis, the x-components of these vectors may
be written as
MA;ZMA;"COS&J‘ 1
Mp:= Mg,y cos ot

Substituting Eq. 8 into Eqs. 6a and 7a, the
motion of M,, and Mg, are given by the
classical equation of motion,

d ( or )"'a?':- =0 (i=
g BM:': *
which leads a set of two homogeneous equa-
tions,
(Wa+JAB/2-—(£J)MA;(+JABMB.\'/2=0 (10)
JasMas/2+ (wp+Ja/2—w)Mp:=0  (10a)
These equations have a non-vanishing solu-

tion only when the determinant of the coeffi-

cients of May and My, is zero, i.e.,

[ —

| wp+Jap/2—w, Jas/2 l=0 a1
i Jas/2, wp+Jag/2—0 |

and from the secular equation (11), we obtain

the relation,

@=1/2+ [(@a+wp) +Jap=E (6245 +T %)/

&

A, B)

(12)
where oap=0s—ds is the chemical shift
between the protons of A and B. Similar
treatment of model 2b gives the resonant

frequency,
@0=1/2- [(wa+ ) —Jas=E (¢2an+J%8) "7
(12a)

It is reasonable to assume that the energy
absorbed by the system at resonance is pro-
portional to the magnitude of the mean
kinetic energy of the osc1llat0r, le. to the

square of the vector Msy M‘\:""I"MB;, Hence,
the relative intensity of the spectrum at the
frequency wo, I(w), is calculated from Eq. 10
or 10a with the normalization condition of the
magnetic vector, (13),

Maxy(ma)z‘]'MBxy(a’n)z:l (13)

as
I(@0) = [Maxy(@0) +Mpsy(@0)]* (14)
—1—p{@a—@) (@p—) _ as)

(@a—w0)?+ (wp—wp)?

The calculated spectrum is shown in Fig. 2.
Although the present method of analysis is
based on the classical treatment of an oscil-
lator model, it is shown that the results of

Jas
"‘L[Lal 73 ), @)= |- F}Ti
=3I+ ), Iw)=|+ w{p
ortr-re ) L)

i
@=[-J-I75 ], L@i=|-
Fig. 2. Calculated spectrum.

this analysis are in accordance with those to
be obtained quantum-mechanically.

The quantum-mechanical Hamiltonian of a
two-spin system in a laboratory coordinate
system may be expressed as

—_— -3 - —> - —
R=—7alnHr—78l3- Ho+Japla-In (16)
The time-dependent Schroedinger equation is
given by Eq. 17 in a rotating coordinate system
which rotates with angular velocity, w, as

o — 3
iRV, = [—7rala(Ha+@/7a)

— — ——
—rele(Hs+ /1) +JIsls) ¥, a7

The fields at I, and I are effectively reduced
to zero, provided that the angular velocities
of the coordinates are given by

— — —

wa= —7a(Ha—Jasls/Ta) (18)
and

— — —

ws= —7s(Hz—Jasla/Ts) (18a)

If we return to the laboratory coordinate

- —
system, the effective fields at I, and Iz are
written as

N
—JasM3s/27a (19
and
— —
Hs—JasMup/273s (19a)
respectively.

By assuming the macroscopic equations
which have the same form as Eq. 1, we obtain
the equations,

— — —
dMy/dt=7,Ma X (Hx—
and
— — — —
dMp/dt=7sMpX (Hp—JasMa/2y5) (20a)

By taking the time-independence of the com-
ponents of M,; and Mg, into consideration,

Ja B;‘-} B/21a) (20)
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Eqgs. 22 and 22a are substituted into Eqgs. 21 and
2la, respectively.

The equations for the x-components of Egs.
20 and 20a are

dMp:/dt= (ra —JapMs:/2) May

+JasMpyMa,/2 (21
and
dMg./dt= (ys—JagMaz/2) Mgy
+JagMayMz:/2 (21a)
where
Maus=Magycos wt
Az Azy '0‘-’ } (22)
Mpy= —Maxysin ot
and
M33=Mﬂxy cos wt } (223)

MB, = '—MB:y sin wt
Experimental

Calculations and measurements of the NMR
spectra were performed for the di-substituted

benzenes of the type of X-C>—Y: p-aminoben-

zoic acid was dissolved in a concentrated aqueous
solution of potassium hydroxide, and p-toluidine,
p-nitrophenol, and p-nitrobenzaldehyde were dis-
solved in carbon tetrachloride, methanol and
acetone, respectively. These solutions were saturated
at 28°C and sealed in the glass tubes with the
diameter of 3.5~3.8 mm.

The apparatus of the NMR measurements is the
one constructed in this laboratory having the same
structure as the one reported by Gutowsky et al.
before®>, and operated at the frequency of 27.030
Mc. The samples were spinned during the
measurements. The separations of each component
of the spectra were measured on the recorded
charts using the records of ethanol as the standard
. reference : the J value of the coupling between the
methyl and methylene groups in ethanol was taken
as 6.90 cps.»?

Discussion

In Fig. 3, the spectrum for the anisaldehyde
is shown as an example of NMR measurements.
The values of the chemical shift and the spin-
spin couplings were calculated from Egs. 12 and

-4.0 -:ilt) -20 -lb 0 lllJ 20 30 40 cprs H
Fig. 3. The spectrum of anisaldehyde.
Resonance frequency =27 Mc.

5) H. S. Gutowsky, L. Meyer and R. E. McClure, Rev.
Sci. Inst., 24, 644 (1953).
6) J. T. Arnold, Phys. Rev., 102, 136 (1956).
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J AND ¢ VALUES OF THE RING PROTONS

OF X-< }—Y TYPE MOLECULES
RES. FREQ.=2T7 Mc.

TABLE I.

X Y J cps. g cps.
-CHO CH;0- 8.62 24.2
-COOH NH,- 8.21 30.1
-CH; NH.- 8.70 13.54
-NO: HO- 9.06 31.1
-NO. OHC- 9.24 6.6

12a as listed in Table I. The maximum

error in the results of Table I is about 109,
which is assumed to be mainly due to the
fluctuations in the chart speed of the recorder.
Rigorously speaking, the compounds wused
here are not the two-spin system, but belong
to four-spin system, and the values listed in
Table I contain some error due to this
approximation. But, this error is assumed to
be quite small.

It is seen in Table I that the o’s are de-
pendent on the species of the substituents of
X and Y, whereas J’s are not dependent with
a constant value of about 8.7(=0.5) cps. If
we can assume that an additive law holds
with the chemical shifts of the ring protons,
d, of monosubstituted benzenes, the magnitudes
of ¢’s could be related by the relation,

[o]=](dx"—0dy™) — (6+°+dx™)| (23)

where, for example, dx° and dy™ refer to the
chemical shifs of ortho-proton of X and the
meta-proton of Y, respectively.

We calculated the magnitudes of ¢ by using
the values of 4’s for the monosubstituted
benzenes reported by Corio and Dailey™, and
compared the calculated results with those
obtained experimentally. Agreements are not
good between the o¢’s of calculation and of
observation whereas the observed values of
a’s showed good proportionality to |d:°—d,°|.
This seems to suggest that the additivity does
not hold with the §’s for the ring protons of
di-substituted benzenes.
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